"Towards Generalizable Autonomy: Duality of Discovery & Bias"

Monday, March 14 @ 11am PST

CSE 1242 &

Zoom: https://ucsd.zoom.us/j/97569479664

Password: 064751

Faculty Host: Henrik Christensen

Seminar Abstract

Generalization in embodied intelligence, such as in robotics, requires interactive learning across families of tasks is essential for discovering efficient representation and inference mechanisms. Concurrent systems need a lot of hand-holding to even learn a single cognitive concept or a dexterous skill, say “open a door”, let alone generalizing to new windows and cupboards! This is far from our vision of everyday robots! would require a broader concept of generalization and continual update of representations.
My research vision is to build the Algorithmic Foundations for Generalizable Autonomy, which enables robots to acquire skills in cognitive planning & dexterous interaction, and, in turn, seamlessly interact & collaborate with humans. This study of the science of embodied AI opens three key questions: (a) Representational biases & Causal inference for interactive decision making, (b) Perceptual representations learned by and for interaction, (c) Systems and abstractions for scalable learning.

This talk will focus on decision-making uncovering the many facets of inductive biases in off-policy reinforcement learning in robotics. I will introduce C-Learning to trade off-speed and reliability instead of vanilla Q-Learning. Then I will talk about the discovery of latent causal structure to improve sample efficiency. Moving on from skills, we will describe task graphs for hierarchically structured tasks for manipulation. I will present how to scale structured learning in robot manipulation with Roboturk, and finally, prescribe a practical algorithm for deployment with safety constraints. Taking a step back, I will end with notions of structure in Embodied AI for both perception and decision making.

Biosketch:

Animesh Garg is a CIFAR Chair Assistant Professor of Computer Science at the University of Toronto, a Faculty Member at the Vector Institute and the Robotics Institute. Animesh earned a Ph.D. from UC Berkeley and was a postdoc at the Stanford AI Lab. His work aims to build Generalizable Autonomy which involves a confluence of representations and algorithms for reinforcement learning, control, and perception. In particular, he currently studies three aspects: learning structured inductive biases in Sequential decision making, using data-driven causal discovery, and transfer to real robots: all in the purview of embodied systems.

His work has earned many best-paper recognitions at top-tier venues in Machine Learning and Robotics such as ICRA, IROS, RSS, Hamlyn Symposium, Workshops at NeurIPS, ICML.

Homepage: http://animesh.garg.tech/